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NOMENCLATURE V, 
specific heat ; 
internal energy per unit volume; 
a positive-valued function definable 
within the volume element, d V; an 
integrating factor; 
a positive function of temperature 
only ; 
gradient of g in the a’th direction, 
Wax,.; 
a variational integral; 
the v’th flux of a conservative 
variable ; 
kI, k,, or k,; thermal conductivity 
of isotropic body; 
thermal conductivity in the a’th 
direction; 
coefficients in the expansion of k, 
as a power series of aTjPx,, con- 
stants or functions of position only; 
thermal conductivity relating the 
heat flux in the a’th direction caused 
by the temperature gradient in the 
/3’th direction; constants or func- 
tions of position only; 
non-linear part of thermal con- 
ductivity relating the heat flux in 
the a’th direction caused by the 
product of the temperature gradi- 
ents in the Fth and y’th directions; 
constants or functions of position 
only ; 
position dependent part of thermal 
conductivity; a positive-valued func- 
tion ; 

volume; 
x1, x2, or x3; 
co-ordinates; 
thermodynamic force associated 
with the v’th flux; 
steady state distribution function of 
temperature, a function of position. 

German symbols 

E 

thermokinetic potential; 
the time rate of change of thermo- 
kinetic potential, dz/dt. 

Greek symbols 
al or aj, 

& or Cij, 

iit or +, 

. . 
iii or 81, 

P. 

A 

a conservative variable per unit 
volume ; 
the time rate of change of a con- 
servative variable per unit volume; 
dai/dt or dajldt respectively; 
a conservative variable in the 
volume element, d V; 

the time rate of change of a con- 
servative variable in the volume 
element, dV; d%/dt or dzj/dt 
respectively; 
a change of some quantity within 
the volume element, dV 
partial differentiation with respect 
to position; 
an arbitrarily small quantity; 
arbitrary function of position which 
vanishes on the surface ; 
density; 
a state function definable within 
the volume element, dV. 

temperature dependent part of 
thermal conductivity; 
a constant not equal to -1 and is 
independent of direction; 
entropy per unit volume; 

entropy of the volume element, d V; 

Subscripts 
=, 8, or Y. 
i, i, 
v. 

for co-ordinates; 1, 2, or 3 ; 
for conservative variables; 
for forces and fluxes. 

temperature; rliTRODUCTION 
gradient of T in the a’th direction, IN 1954, Glansdorff and Prigogine [l] examined con- 
aTlax, ; tinuous systems with time independent boundary con- 
time ; ditions and showed the validity of the following inequality 
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CJ,dX,<O (1) Since 5 can only decrease with time, it becomes a mini- 
mum at the steady state. Equation (5) thus can be used 
for the variational calculation of all steady-state problems. 

Some discussion of the integrability of equation (2) 
for several natural dissipative processes including heat 
conduction within the system. In equation (I), J is the 
flux of a conservative variable and X is the corresponding 
force (entropy change per unit flux). The summation 
consists of all the independent fluxes and forces within 
the system and at the boundary. More recently they 
further examined equation (1) to include mechanical 
processes and found it to be valid also [2]. 

In examining the classical hypothesis of the separability 
of individual processes, the present author [3] showed 
that the left-hand side of equation (1) is integrable for all 
irreversible processes separable by a linear transformation 
of the fluxes and forces so that it becomes a total differ- 
ential : 

d2 = c J,, dX, 
” 

(2) 

The inequality, equation (l), was shown [3] to be valid 
for all irreversible processes for a discontinuous system. 
Thus the function 2 can only decrease with time and has 
been given the name of thermokinetic potential. It has 
since been shown [4] that the inequality is valid for con- 
tinuous systems in general since it is a result of the second 
law inequality, provided that each small volume element 
in the continuous system is thermodynamically stable, 
in the sense of the second law, when isolated by itself 
and when all the irreversible processes are frozen. This 
is most easily shown [4] by expressing the time rate of 
equation (2) as a volume integral: 

where i is the entropy of the small volume element, d V, 
a is a conservative variable in the volume element and i 
is the time rate of change of the conservative variable. 
Let S and a be the corresponding quantities per unit 
volume; then equation (3) can be represented by: 

t= JdVCC&jtiibj <O. (34 

V 1 1 

The double summation within the integral consists of all 
the conservative variables and can only be negative or 
zero according to the second law of thermodynamics. 
Since this is true for each volume element, a more general 
inequality would be 

where f is any positive-valued function definable within 
each volume element. The factor f can be considered as 
an integrating factor if the left-hand side of equation (4) 
becomes the time derivative of a state function or the 
following becomes a total differential: 

has been given by Prigogine and Balescu [5] and by the 
present author [4,6]. The main problem is to find the 
integrating factor and, for systems where the integrating 
factor can be shown to be non-existent, to study the 
stability of such a kinetic system. For the heat conduction 
problem Glansdoff and Prigogine [2] proposed a suc- 
cessive-approximation procedure in which they first 
assume a temperature distribution, integrate equation (5) 
without the integrating factor, minimize the integral to 
obtain a new temperature distribution and repeat the 
procedure. But in this mamter they presuppose the 
existence of a stable steady state and the procedure would 
not converge if such state did not exist. It seems more 
interesting and certainly more desirable to find exact 
variational integrals from equation (5) so that the 
existence of a stable steady state is assured. It is the 
purpose of this paper to find these integrals for some 
heat conduction problems in which the integrating factor 
can be easily obtained and to prescribe a general method 
for obtaining these integrals. The technique is believed 
to be new and many integrals, even though obvious from 
this technique, have not been heretofore presented. 

THE THERMOKINETIC POTENTIAL 
In the problem of heat conduction, the only conserva- 

tive variable of interest is the internal energy, E (per unit 
volume). Consider a volume element d V = dx,dx,dx, in 
the solid body. For such a volume element it is readily 
seen from thermodynamics that: 

as 1 i-1 =- aEv T 

1 
CPT” 

and 

aE ST 
a; = cp6t 

where c is the specific heat and p is the density of the 
volume element. Now let k, (a = 1, 2, 3) be the thermal 
conductivity in the a’th direction; an energy balance 
shows that 

(9) 

Substituting equations (7) (8) and (9) into equation (5) 
gives 

Integrating by parts using 
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and changing one of the volume integrals by a surface Then let g = 2, 
integral using Green’s theorem, it is seen that for constant 
surface temperatures (Xf = 0 everywhere on the surface), 2= dVCCk 

5 
V 

c( B J(;Kj 
cm 

S%= IdV5kaga;(g). (12) (v) k, = k&c,, x2, xa)kT(T) for all a with kax beng 
V a positive function of position only and kT being 

By linding an integrating factor A it is possible to make 
that of temperature only: Let g = 2kT 

equation (12) a total differential. Then for any temperature 
distribution in the body, a thermokinetic potential 2 can = (21) 
be delined. Such a potential becomes a minimum at the 

1 dVkT2 F k, @’ 

V 

steady-state temperature distribution and therefore can 
be used as a variational integral. For example, when (vi) k, is a function of position and of Z/&Y,: Let 

k, = k for all Q in an isotropic body, let f = 2Ts/k which (a = 1,2,3) 

is always a positive quantity. Equation (12) becomes 
k, = kaO + kal $ i kz2 ta$j’ + . . . (22) 

,,=~dV$k$$(~). 
a a 

(13) where do, k,l, etc., are constants or functions of position 
V only. Then let g = 1, 

Equation (I 3) is a total differential when k is a constant. 
A thermokinetic potential can be defined as ~=ldVf~$(~)‘+k+(~)J T . .]. (23) 

Z=jdVf(g)’ 
V 

(14) (vii) k, a.re such that (a = 1,2,3) 
,, 
I 

which is the usual variational integral used for the case k,!&;k .%+!$ gk 

of constant thermal conductivity in an isotropic body. 0 @ ax 
.Z aT (24) 

B=l $ 2 fl=r y=r @y ax8 axy 

To show that many variational integrals can be readily 
obtained from equation (12), consider that f = gT*, with 

where ka8 and k+, are constants or functions of position 

g being a positive function of temperature only. Equation 
only with k,B satisfymg equation (19) and kap,, satisfying 

(12) becomes 
the separability condition [3] (totally symmetric): 

k 

,,=JdV$‘k,a58(g;$). 
& = kaar = kra8 = . . . . (25) 

(15) Then let g = 1, 
. 

Equation (15) is obviously a total differential for all the 
following cases: 

“=JdQ7:?@(&) I. a B 
(i) k, are constants: Let g = 2, 

(16) 

(ii) k, are functions of position only: Let g = 2 and a 
thermokinetic potential same as equation (16) is 
obtained. 

(iii) k, = kp(T) for all a and kT is a function of tem- 
perature only: Let g = 2ky 

(17) 

(iv) kz are such that 

All the foregoing cases are only for g being a constant 
or a function of temperature only. With other possibilities 
for g, it is easily realized that a thermokinetic potential 
and hence a variational integral can be obtained for many 
problems of heat conduction. 

THE INTEGRATING FACTOR 
In order to define a thermokinetic potential in the 

general case of heat conduction, it is necessary to find 
a positive-valued function f so that equation (12) is a 
total differential. This certainly will be the case if equation 
(12) can be expressed as 

(27) 

where kzb are constants or functions of position only and 
obey the Onsager reciprocity relations: where 4 is a state function definable within each volume 

element in the body. Such a function would vary with the 

km/9 = k@ (19) temperature distribution according to equation (12): 
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where g = f]TZ. To save some writing, equation (28) is 
expressed as : 

S+ = (I: k, T,’ g,‘) 6T -I- g I; k, T,’ 6T,‘. (29) 
a a 

Equation (29) indicates that #J can be considered as a 
function of T, T,‘, T,‘, and T3’ within each volume element 
and, if S+ is a total differential, the following should be 
valid: 

a (c k, T,’ g&‘) 
a (gkb) LL.---=Tp’-@_ 

i?Tj’ 
p= 1,2,3 (30) 

Equations (30) and (31) are a set of six partial differenti~~l 
equations from which the function g could be found. 
It is not necessary to solve these equations completely. 
Any positive-valued function g which satisfies both 
equations (30) and (31) will make equation (12) a total 
differential. In solving these equations, g and the k,‘s 
are considered s functions of T, T,‘, T,‘, and T3’ in each 
volume element. if it is impossible to define a thermo- 
kinetic potential for the system, then according to 
previous arguments [4] the system may not be stable and 
a stationary steady state may not exist. 

As an example offinding the function g from equations 
(30) and (31), consider that g is a function of temperature 
only. Then equation (30) can be solved to give 

lng = J ~‘~k~i~T) dT 
kfl 7”’ -,- F (T,‘)$ (akJaTp’) 

/3= 1,2,3 (32) 

and equation (31) becomes 

which is the Onsager reciprocity relation, equation (19), 
for the linear case, equation (18), and implies the separa- 
bility condition, equation (25), for the non-linear case, 
equation (24). Now it is readily seen from equation (32) 
that g can be taken as a constant if k, are constants, 
case (i), or if they are functions of position only, case (ii), 
or if they are functions of both temperature gradient 
and position, cases (iv), (vi) and (vii). For case (iii), 
k_ = k&T) for all a. substituting into eauation (32) gives 
g”= co&t I&. For case (v), k,= k,ki for all a, sub- 
stituting into equation (32) gives g = const kT also. This 
covers all the seven cases discussed previously. Now by 
using equation (32) the function g can be obtained also 
for the following cases : 

(viii) k, can be expressed as CT,‘>” k&x,, x2. xS) kT(T) 
where n is a constant independent of a and is not equal 
to -1: Substituting into equation (32) gives 

g = const (k2v)“ni1 (34) 

which gives the following thermokinetic potential from 
equation (15) 

2 = J d Y (kT)‘j* +I x k,fTa’)z. (35) 
a 

V 

The constant in equation (34) has been taken as n -t 2. 
(ix) k, = k,,(xl, x2, x,)kT(T) -I- k,,/T,’ where kao are 

constants or functions of position only. Substituting 
into equation (32) gives g equal to kT. The following 
variational integral is obtained: 

It is probably not necessary to work out more examples. 
Those who have specificproblemsc~startfromequations 
(30) and (31), find a function g, or f/T*, and substitute 
into equation (12). 

THE STEADY STATE 
Although the steady-state temperature distribution 

corresponds to the minimum of the thermokinetic 
potential which depends on the function g, the minimiza- 
t ion condition is fortunately independent of g. 

Let 7(x,, x2, x3) = J&, x2, x3) be the steady-state 
distribution, then S2 = 0 for all small weak variations 
around such a distribution, Describe the variation by 

T(x,, x2, XJ = Y(Xl, Xp, XJ -I- Gi(Xl, x2, X3) (37) 

with E being an arbitrarily small quantity and 5 at 
arbitrary function which vanishes on the surface. Sub- 
stituting into equation (10) gives the following minimiza- 
t ion condition 

Equation (38) can be obtained also from equation (12) 
by substituting equation (37). Now since both g and 5 
are definable within each volume element and since 5 is 
an arbitrary function, equation (38) can be satisfied if 
and only if y satisfies the following partial differential 
equation 

(39) 

which is simply the steady-state condition for all heat 
conduction problems. 

This property of the thermokinetic potential enables us 
to find g from any variational integral. Let the varia- 
tional integral be 
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For the same variation as equation (37), the change of 
the integral is 

Since 1 is an arbitrary function, the minimization con- 
dition of I is 

which should be equivalent to equation (39). It is possible 
to factor out the left-hand side of equation (39) from the 
left-hand side of equation (42). The residual factor is 
the function g as is obvious from a comparison between 
equations (38) and (41). This procedure can be verified 
by calculatingg from all the variational integrals obtained 
previously. It indicates also that if a function g cannot be 
found from equations (30) and (31) there probably 
exists no variational integral. Then caution should be 
given to the possible instability of the steady-state. 

Without using a variational integral, it is also possible 
to find the steady-state temperature distribution from 
equation (10) or equation (12). Numerically it is only 
necessary to introduce a number of parameters into the 
function y and to demand equation (38) or equation (39) 
to be valid for the independent variation of each para- 
meter. Analytically it is of course equivalent to the 
solution of equation (39). Another way is to simplify the 
variational integral or to integrate equation (12) by 
assuming a spatial distribution of certain quantities such 
as k,. The variational integral, equation (16), is then 
minimized to obtain a temperature distribution. A new 
spatial distribution of k, is then introduced and the 
minimization repeated. Such successive-approximation 
procedures are similar to the one proposed by Glansdorff 
and Prigogine [2]. They all have the assumption that a 
stable steady state exists and therefore may not converge 
if such a state does not exist. It would be much safer to 
take the trouble of finding a function g from equations 
(30) and (31) so as to formulate an exact variational 
integral. 

DISCUSSION AND SUMMARY 
It is worth mentioning here that the rate of entropy 

production, a function which always exists and is defin- 
able for all macroscopic kinetic systems, describes also 
the kinetic behavior of a non-equilibrium state. Unfor- 
tunately, as shown by Cahn and Mullins [7], a steady state 
in the simplest heat conduction problem does not corre- 
spond to the state of minimum rate of entropy production. 
Starting with a uniform slab at temperature T1 and at 
time zero maintaining the temperature at one-face at 
r, (> T1) and that at the other face at T1, one can easily 

show [6] that as time elapses the rate of entropy pro- 
duction first decreases, passes through a minimum, and 
then increases and approaches a steady-state value. Such 
behavior will never happen to the thermokinetic potential 
which can only decrease with time as shown by equation 
(4). The condition of minimum thermokinetic potential 
corresponds exactly to that of the steady-state as shown 
by equation (39) which is independent of the integrating 
factor f, or gT2. The thermokinetic potential thus always 
can serve as a variational integral. 

The thermokinetic potential is in general definable from 
equation (5) after finding an integrating factor, f, such 
that equation (5) is a total differential. For heat con- 
duction problems with constant surface temperatures, 
the thermokinetic potential is definable from equation 
(12) in which the function f/TZ, or g, has to satisfy 
eauations (30) and (31). The function R and hence the 
thermokinetic potential can be easily obtained for many 
problems as illustrated. These include isotropic solids 
whose thermal conductivity can be expressed as a function 
of temperature only, or of position only, or as a product 
of the two functions, and anisotropic solids whose 
thermal conductivity is a function of both position and 
temperature gradients. If the function g cannot be found 
from equations (30) and (31), it is indicated that a 
variational integral may not exist by showing that the 
function g can be obtained from the variational integral 
if it existed. This is achieved simply by comparing equa- 
tion (42) with equation (39). Thus it is implied that a 
variational integral can be obtained from the thermo- 
kinetic potential and vice versa. 
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